• 0 Posts
  • 11 Comments
Joined 1 year ago
cake
Cake day: June 15th, 2023

help-circle

    • cargo install is for installing rust programs for your user, not for adding dependencies to your Rust project. Many cargo subcommands can be installed this way, for instance cargo bloat.
    • The file you are talking about is called Cargo.toml, because it is the file you need to write in order to configure cargo for your Rust project. TOML is the name of the file format. For details, please see the introductory chapter to Cargo in the Rust book.
    • Cargo recently got a new subcommand called cargo add, which allows to add dependencies directly on the command line. However, all it does is to add/edit/remove the respective lines in Cargo.toml. (Personal opinion: I have found it way easier to just edit the file directly than to learn yet another command…)

    That said: You still need to edit the Cargo.toml file, even if you solely use cargo add to manage your dependencies. That’s because that file contains a lot more information about your project than just the dependencies. For instance the current version, the feature-flags, your name, a link to the public repo,…


  • I haven’t done much Rust coding this year yet, mainly because I am trying to learn Lean4 and spent the last couple of months writing a (partially) formally validated (but not very fast) Binary Heap in Lean4.

    However, a few days ago I had an inspiration at night, that brought me back to my Rust spare time project: The visual novel engine I had started last year.

    For now I only did a relatively small change, but it’s one that will save me a lot of time (and nerves) later on. I am using a Free Monad based embedded Domain Specific Language for writing the game logic. The change now was to wrap that Free Monad in a State Monad Transformer, which I use to store the game state in.

    This idea seems to be working surprisingly well, and that has given me enough motivation to return to this project and to keep developing it further for now.


    Long and boring explanation with way too much detail:

    Sorry for going on a tangent, but there is a Rust-specific detail that makes this cool beyond the usual advantages of using a State Monad Transformer, and I cannot stop myself from sharing.

    For composing a large Free Monad, do-notation is more or less a must-have. However, do-notation in Rust only works well with types that implement Copy. If you want to use any other type in do-notation, you can only access variables of it in the following two lines. An attempt to access the data later will lead to an ownership problem (explained here). I have tried to overcome this by adding additional syntax to do-notation, but that is a crutch at best.

    So, this is where the State Monad Transformer comes in. It side-steps this problem by moving the state out of the do-notation block into the Free Monad’s Pure-nodes. That way it is readily available via the State Monad Transformer’s get()/put() functions, and the “use within two lines” limitation is not a big issue any more, as one can always get the value on one line, do something with it in the next line, and write the result back on the second line.




  • Behind all the negative tone there is a valid concern though.

    If you don’t know Rust, and you want to change internal interfaces on the C side, then you have a problem. If you only change the C code, the Rust code will no longer build.

    This now brings an interesting challenge to maintainers: How should they handle such merge requests? Should they accept breakage of the Rust code? If yes, who is then responsible for fixing it?

    I personally would just decline such merge requests, but I can see how this might be perceived as a barrier - quite a big barrier if you add the learning cliff of Rust.






  • I can only speak out of my own experience, which is mostly C++, C#, C and Rust, but I also know a bit of Haskell, Java, Fortran, PHP, Visual Basic, and, to my deepest regret, also JavaScript.

    For additional context: I have been working in game development for the last 7 years, my main language is C++ for Unreal, but I’ve also worked on some Unity projects with C# as main language. Before I switched to game dev I worked in material science, and used C, mostly. I use Rust for my spare time projects, and the game company I work at is planning to introduce it into our Unreal projects some point later this year.

    Of all the languages I mentioned above, (Safe) Rust and Haskell are the only ones that have not yet made me scream at my PC, or hit my head against the desk.

    So, some of the reasons why I personally love Rust:

    • Rust is extremely simple compared to the other languages I mentioned above. If you read the official introduction you know all you need to write Safe Rust code.
    • Rust’s syntax is elegant. It’s not as elegant as Haskell, but it’s a lot more elegant than any C-based language.
    • Rust is (mostly) type safe. There are (nearly) no implicit conversions.
    • Rust is memory-safe, without the runtime overhead that garbage collected languages incur.
      • This is a bit of a neutral point though. The Rust compiler will complain if you make mistakes in memory management. Unlike in managed languages, you still need to do the memory management by hand, and find a working solution for it.
    • The memory management model of Rust (“borrow checker”) makes data dependencies explicit. This automatically leads to better architecture that reflects dependencies, because if the architecture doesn’t match them, development will become an uphill battle against the borrow checker.
    • Due to the borrow checker, you can use references extensively, and rely on the referenced object to valid, and also that it is up-to-date (because it cannot be muted or go out of scope as long as you hold the reference).
    • Traits are an amazing way to abstract over types. Either at zero-cost (static dispatch), or, in the rare cases where it’s needed, using virtual function tables.
    • Rust aims to have no undefined behaviour. If it compiles the behaviour of the code is well defined.
      • This, together with the borrow checker, ensures that there are (nearly) no “weird bugs”. Where in C++ one quite regularly hits issues that at first glimpse seem impossible, and only can be explained after several days of research on cppreference (“oh, so the C++ standard says that if this piece of code gets compiled on a full moon on a computer with a blue power LED, it’s undefined behaviour”), that almost never happens in Rust.
    • Macros in Rust are amazing. There are macros-by-example that work by pattern-matching, but there are also procedural macros, which are Rust functions that take Rust code as input, and generate Rust code as output. This gives you amazing power, and one of the most impressive examples is the Serde serialization framework, that allows you to add serialization to your data types simply by adding an attribute.
    • Tooling for Rust is pretty good. The Rust compiler is well known for its helpful error messages. The rust-analyzer plugin for Visual Studio Code is great too. (It also works with vim, Qt Creator and others, but the but Visual Studio Code works best imho.)

    The points mentioned above mostly apply to Safe Rust though. Unsafe Rust is a different story.

    This brings us to the downsides. Rust isn’t perfect. Far from it, actually. Here are some of the things that aren’t great about Rust.

    • No Higher Kinded Types. This is my main issue with Rust. Even C++ has them (as usual for C++ in a horrible un-ergonomic and utterly confusing way). If Rust had Higher Kinded Types, the language could have been simpler still. For instance, there would have been no need for the async keyword in the language itself.
    • Unsafe Rust is hard. In my opinion even harder than C++, because of Rust’s aliasing rules. Unlike C++, Rust doesn’t allow mutable memory aliasing. That’s because mutable aliasing can never happen in Safe Rust, and not supporting it improves performance. This means that when writing Unsafe Rust, one has to be careful about aliasing.
      • Luckily one only rarely needs Unsafe Rust, usually only in order to call functions from other languages. Still, it’s hard, and I’d generally suggest to use an automated code generator like cxx.rs for interfacing with other languages.
    • Interior Mutability. I understand why it exists, but it breaks a lot of the guarantees that make Rust a great language. So, my conclusion is that one should avoid it as much as possible.

    However, the upsides clearly outweigh the downsides imho.

    tl;dr If a (Safe) Rust program compiles, chances are pretty high that it also works. This makes programming with it quite enjoyable.