Thousands of children could die after court backs campaign group over GM crop in Philippines, scientists warn
Scientists have warned that a court decision to block the growing of the genetically modified (GM) crop Golden Rice in the Philippines could have catastrophic consequences. Tens of thousands of children could die in the wake of the ruling, they argue.
The Philippines had become the first country – in 2021 – to approve the commercial cultivation of Golden Rice, which was developed to combat vitamin A deficiency, a major cause of disability and death among children in many parts of the world.
But campaigns by Greenpeace and local farmers last month persuaded the country’s court of appeal to overturn that approval and to revoke this. The groups had argued that Golden Rice had not been shown to be safe and the claim was backed by the court, a decision that was hailed as “a monumental win” by Greenpeace.
Many scientists, however, say there is no evidence that Golden Rice is in any way dangerous. More to the point, they argue that it is a lifesaver.
Modern nuclear plants are pretty safe in general, and they’re not that expensive when you compare its energy output to other types of power plants’ energy output. Not sure about the “stupid” remark though.
While nuclear energy can appear cost-effective compared to other energy sources, the true cost is often higher when considering indirect factors. Society typically bears these costs through taxes, insurance premiums, and health care costs rather than the price paid for nuclear-generated electricity.
These costs can be divided into several categories:
Environmental Costs: These include the long-term management of nuclear waste, the potential contamination from radioactive materials, and the decommissioning of nuclear plants. Managing nuclear waste safely over thousands of years is a significant and expensive challenge.
Health Costs: Exposure to radiation can have serious health impacts, including cancer and genetic damage. The cost of healthcare for affected individuals and communities can be substantial.
Accident Costs: In the event of a nuclear accident, such as the Chernobyl or Fukushima disasters, the costs can be immense. This includes evacuation, compensation, cleanup, and long-term environmental and health monitoring.
Security Costs: Ensuring that nuclear materials are not diverted for weapons use or targeted by terrorists involves significant expenditure on security measures and regulatory oversight.
Economic Costs: There can be broader economic impacts from nuclear accidents, including loss of agricultural or commercial land, reduced property values, and long-term disruption to local economies.
The most GPT ass comment I’ve ever read
PS: The evacuation at Fukushima killed more people than the actual disaster would have
PS: The materials used for nuclear reactors are not the materials used for nuclear bombs. Coal and gunpowder both burn, but you don’t throw gunpowder in a coal power plant, right?
No way this wasn’t written by ChatGPT
Theres been more damage from coal ash and oil power plants to the environment than from nuclear.
Coal power plants are responsible for more radiation than nuclear
Again, Coal has done more damage to people and the environment, than nuclear ever has.
No ones making a bomb from nuclear power plant waste. Pointless fearmongering from coal lobbyists.
Coal Ash has, again, done far more damage to agricultural/commerial land, reduced property valuies, and disrupted local communities far more than Nuclear power ever has.
The point is that green energy, so solar, wind, etc. is cheaper, quicker, easier, and more sustainable while providing everything that is necessary.
The issue is that none of those have the energy density of nuclear power. A single mid-sized nuclear plant can power a small city, where that same city would need at least a half-dozen solar farms around the area (assuming there’s enough cleared land to support it - rooftop solar can offset, but it generally will not replace mains power), or tons of wind turbines (again, subject to area - not every place is a good candidate). Geothermal and hydroelectric are subject to that same issue - you can’t place them anywhere, there are very specific requirements to get one up and running.
I agree we should work towards 100% green energy, but nuclear is an effective option dollar-for-dollar and acre-for-acre until we figure out a good way to increase energy density of wind or solar to a point where we don’t need enormous tracts of land dedicated to them in order to support places where people live.
Except theres always going to be slack times, and I personally would rather have nuclear power filling in those dips, than fucking coal or oil.
Especially with new generations of reactors being able to run off of older generations waste.
This would be true, except for the fact that nuclear is terrible at filling in slack times. Nuclear power for the most part needs to run really consistently, 24/7. Better to fill gaps with a diversity of reasources, more transmission, and storage.
Everything you’ve mentioned are “supply shaping” measures: trying to match supply to an independent, wildly variable demand.
We need to focus on “demand shaping”. We need to “flatten the peak” of our energy consumption, by adjusting how and when automated systems use power.
For example, water heaters consume about 20% of our energy. If we were to install thermostatic mixing valves after our water heaters to provide a consistent output, we could wildly vary the setpoint of our tanks, from anywhere just above shower temperature, to just below the boiling point. We could have our water heaters soak up every available kilowatt during a solar peak, raising the stored water temperature to 190F, and storing that hot water until it is needed for showers overnight.
Desalination, hydrogen electrolysis, and various other industries could also adjust their production rates to take advantage of favorable energy pricing, shutting down production entirely and backfeeding the grid with their own, on-site solar and wind production when energy prices favor their power more than their nornal production.
With the “slack times” heavily moderated by effective demand shaping, the rigid consistency of nuclear isn’t nearly as detrimental.
I mean, we obviously need to do both. The conversation in the thread is about nuclear, which is a supply side resource. DR and demand shaping do even more to enable truly renewable resources. Why do the demand shaping to enable nuclear when renewables are cleaner and cheaper?
It is pretty stupid to look at a nuclear power plant and think “cool, this is pretty clean, cheap and safe” when spent nuclear fuel and plutonium wastes require well-designed storage for periods ranging from tens of thousands to a million years, to minimize releases of the contained radioactivity into the environment.
What if generation 2748 in the future makes a mistake and pollutes an entire region? A million accidents could and will happen, it is so obvious. Aren’t you aware of this? It’s insane to do this to our childrens children and all other earthlings that will live after us.
I’m curious why it doesn’t make up a bigger share of energy generation in China then. I assume China doesn’t have the same issues with NIMBYism.
They’ve been increasing usage relatively fast. Air quality is an apparent motivator, but being less sufficient on coal , as well as increasing energy demands with of course massive (though recently slowing) growth of middle class population and their consumeristic and life needs are also motivators. I’m not sure of the share of generation. There is a fair amount of NIMBYism in China if you check on local or regional news occassionally. I’m not sure about recently but nuclear plants under construction have had protests, as well as serial polluting factories and other cases. I’m not sure if those qualify as NIMBYism but there is a culture of dissent where it affects the outcomes of especially individuals, believe it or not. None of this is in defence of the CCP who can go suck an egg and who have been much more stern in their responses to dissent in recent years.
I wasn’t sure how much NIMBYism was a factor but either way, solar and wind seem to be growing a lot faster than nuclear: https://ember-climate.org/countries-and-regions/countries/china/